High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder
نویسندگان
چکیده
High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder Weixun Zhou, Zhenfeng Shao, Chunyuan Diao & Qimin Cheng To cite this article: Weixun Zhou, Zhenfeng Shao, Chunyuan Diao & Qimin Cheng (2015) Highresolution remote-sensing imagery retrieval using sparse features by auto-encoder, Remote Sensing Letters, 6:10, 775-783, DOI: 10.1080/2150704X.2015.1074756 To link to this article: http://dx.doi.org/10.1080/2150704X.2015.1074756
منابع مشابه
Spatial-spectral Classification Based on the Unsupervised Convolutional Sparse Auto-encoder for Hyperspectral Remote Sensing Imagery
Current hyperspectral remote sensing imagery spatial-spectral classification methods mainly consider concatenating the spectral information vectors and spatial information vectors together. However, the combined spatial-spectral information vectors may cause information loss and concatenation deficiency for the classification task. To efficiently represent the spatial-spectral feature informati...
متن کاملA Total Ratio of Vegetation Index (TRVI) for Shrubs Sparse Cover Delineating in Open Woodland
Persian juniper and Pistachio are grown in low density in the rangelands of North-East of Iran. These rangelands are populated by evergreen conifers, which are widespread and present at low-density and sparse shrub of pistachio in Iran, that are not only environmentally but also genetically essential as seed sources for pistachio improvement in orchards. Rangelands offer excellent opportunities...
متن کاملDigital surface model extraction with high details using single high resolution satellite image and SRTM global DEM based on deep learning
The digital surface model (DSM) is an important product in the field of photogrammetry and remote sensing and has variety of applications in this field. Existed techniques require more than one image for DSM extraction and in this paper it is tried to investigate and analyze the probability of DSM extraction from a single satellite image. In this regard, an algorithm based on deep convolutional...
متن کاملWhen Low Rank Representation Based Hyperspectral Imagery Classification Meets Segmented Stacked Denoising Auto-Encoder Based Spatial-Spectral Feature
When confronted with limited labelled samples, most studies adopt an unsupervised feature learning scheme and incorporate the extracted features into a traditional classifier (e.g., support vector machine, SVM) to deal with hyperspectral imagery classification. However, these methods have limitations in generalizing well in challenging cases due to the limited representative capacity of the sha...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کامل